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We consider some classical and frustrated lattice spin models with global O(3) spin symmetry. No general
analytical method to find a ground state exists when the spin dependence of the Hamiltonian is more than
quadratic (i.e., beyond the Heisenberg model) and/or when the lattice has more than one site per unit cell. To
deal with these cases, we introduce a family of variational spin configurations, dubbed “regular magnetic orders”
(RMO’s), which respect all the lattice symmetries modulo global O(3) spin transformations (rotations and/or
spin flips). The construction of these states is made explicit through a group-theoretical approach, and all the
RMO’s on the square, triangular, honeycomb, and kagome lattices are listed. Their equal-time structure factors
and powder averages are shown for comparison with experiments. Well known Néel states with one, two, or three
sublattices on various lattices are RMO’s, but the RMO’s also encompass exotic nonplanar states with cubic,
tetrahedral, or cuboctahedral geometry of the T = 0 order parameter. Regardless of the details of the Hamiltonian
(with the same symmetry group), a large fraction of these RMO’s are energetically stationary with respect to
small deviations of the spins. In fact, these RMO’s appear as exact ground states in large domains of parameter
space of simple models that we have considered. As examples, we display the variational phase diagrams of the
J1-J2-J3 Heisenberg model on all the previous lattices as well as that of the J1-J2-K ring-exchange model on
square and triangular lattices.

DOI: 10.1103/PhysRevB.83.184401 PACS number(s): 75.10.Hk, 75.40.Cx

I. INTRODUCTION

Finding the ground state (GS) of an antiferromagnetic
quantum spin model is a notoriously difficult problem.
Moreover, even classical spin models at zero temperature
can be nontrivial to solve, unless one carries some extensive
numerical investigation. In particular, there is no general
method to determine the lowest-energy configurations for a
simple Heisenberg O(3) model of the type

E =
∑
i,j

J (|xi − xj |)Si · Sj (1)

if the lattice sites {xi} do not form a Bravais lattice. Only when
there is a single site per unit cell (Bravais lattice) can one easily
construct some GS1 (see Sec. VI B).

Another situation in which the classical energy mini-
mization is not simple is that of multiple-spin interactions,
where the energy is not quadratic in the spin components.
Finding the GS in the presence of interactions of the type
(Si · Sj )(Sk · Sl) can be difficult and, in general, has to be
done numerically even on Bravais lattices. Such terms arise in
the classical limit of ring-exchange interactions. For instance,
the—apparently simple—classical model with Heisenberg
interactions competing with four-spin ring exchange on the
triangular lattice is not completely solved.2

In this study, we introduce and construct a family of spin
configurations, dubbed “regular magnetic orders” (RMO’s).
These configurations are those that respect all the symmetries
of a given lattice modulo global spin transformations (rotations
and/or spin flips). This property is obeyed by most usual
Néel states. For instance, the two- (three-) sublattice Néel
state on the square (triangular) lattice, that is the GS of
the antiferromagnetic first-neighbor Hamiltonian, respects the

lattice symmetries: each symmetry operation can be “com-
pensated” by the appropriate global spin rotation of angle 0 or
π (0, ±2π/3).

By definition, the set of RMO’s only depends on the
symmetries of the model—the lattice symmetries and the spin
symmetries—and therefore does not depend on the strength
of the different interactions [J (|x|) in the example of Eq. (1)].
These states comprise well-known structures, such as the two-
and three-sublattice Néel states mentioned above, but also
some new states, such as nonplanar structures on the kagome
lattice, that will be discussed in Sec. IV A.

The reason why these states are interesting for the study of
frustrated antiferromagnets is that they are good “variational
candidates“ to be the ground state of many specific models. In
fact, rather surprisingly, we found that these states (together
with spiral states) exhaust all the GS’s in a large range of
parameters of the frustrated spin models we have investigated.
For instance, in the case of a Heisenberg model on the kagome
lattice (studied in Sec. VI C) with competing interactions
between first, second, and third neighbors, some nonplanar
spin structures (based on a cuboctahedron) turn out to be
stable phases. In other words, the set of RMO’s and spiral
states forms a good starting point to determine the phase
diagram of a classical O(3) model, without having to resort
to lengthy numerical minimizations: once all the RMO’s
have been constructed for given lattice and spin symmetries
(using a simple group-theoretic construction, as explained in
Sec. III), one can directly compare their energies for a given
microscopic Hamiltonian. In several cases, we even observed
that one of the RMO’s reaches an exact energy lower bound,
therefore proving that it is one (maybe not unique) GS of the
model.
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These states may also be used when analyzing experimental
data on magnetic compounds where the lattice structure is
known, but where the values (and range) of the magnetic
interactions are not. In such a case, the (equal-time) mag-
netic correlations—measured by neutron scattering—can be
directly compared to those of the RMO’s. If these correlations
match those of one RMO, this may be used, in turn, to get
some information about the couplings. With this application
in mind, we provide the magnetic structure factors of all the
RMO’s we construct and powder averages of some of them
(see Appendix B).

The organization of the paper is as follows: In Sec. II,
we present the definition of an RMO, a state that weakly
breaks the lattice symmetries and all the notations needed
for the group-theoretical approach. In Sec. III A, we explain
the algebraic structure of the group of joint space and
spin transformations that leave a regular spin configuration
invariant (algebraic symmetry group) and describe it for the tri-
angular lattice (detailed calculations are given in Appendix A).
We then explain how to construct RMO’s in Sec. III B. This
approach is algebraically very similar to Wen’s construction of
symmetric spin liquids,3 but there are also strong differences
in the invariance requirements: whereas the symmetric spin
liquids do not break lattice symmetries (they are “liquids”),
our RMO’s indeed break lattice symmetries but in a “weak”
way (see Appendix C). These subsections are self-contained,
but can be skipped by readers interested essentially in the
results. In Sec. III C, we construct all the RMO’s on the
triangular lattice. In Secs. IV A and IV B, we list the RMO’s
on the kagome and honeycomb lattices (which have the same
algebraic symmetry group as the triangular lattice), and with
a minimum of algebra we present the RMO’s on the square
lattice (Sec. IV C). We then show that spiral states can be
seen in this picture as RMO’s with a lattice symmetry group
reduced to the translation group (Sec. IV D). In Sec. V, we
discuss geometrical properties of RMO’s and the relationship
between RMO’s and representations of the lattice symmetry
group. This section can be skipped by readers more interested
in physics than in geometry. In Sec. VI, we study the energetics
of these RMO’s and therefore their interest for the variational
description of the T = 0 phase diagrams of frustrated spin
models. We first show in Sec. VI A that all RMO’s that do not
belong to a continuous family are energetically stationary with
respect to small spin deviations and thus good GS candidates
for a large family of Hamiltonians. After having given a lower
bound on the energy of Heisenberg models (Sec. VI B), we then
show that over a large range of coupling constants, the RMO’s
are indeed exact GS’s of the J1-J2-J3 model on the honeycomb
and kagome lattices (Sec. VI C). We then display in Sec. VI D a
variational phase diagram of the J1-J2-K model on square and
triangular lattices. In Sec. VI E, we discuss finite-temperature
phase transitions: the nonplanar states are chiral and should
give rise to a T �= 0 phase transition. Section VII contains our
conclusion.

The calculation of the algebraic symmetry groups on the
triangular lattice is detailed in Appendix A. Powder averages
of the structure factors of the RMO’s on triangular and
kagome lattices are displayed in Appendix B. Analogies and
differences between the present analysis and Wen’s analysis
of quantum spin models are explained in Appendix C.

II. NOTATIONS AND DEFINITIONS

We will mostly concentrate on Heisenberg-spin models
where on each lattice site i, the spin Si is a three-component
unit vector. But the concept of an RMO can be easily extended
to the general situation in which Si belongs to another manifold
A (such as for nematic or quadrupolar order parameters that
are encountered in some quantum systems).

We note by SS the group of the “global spin symmetries”
of the Hamiltonian. In the general framework, an element of
SS is a mapping of A onto itself, which does not change the
energy of the spin configurations. For a Heisenberg model
without applied magnetic field, SS is simply (isomorphic to)
the orthogonal group O(3). In a similar way, we note by SL

the lattice symmetry group of the Hamiltonian. An element of
SL acts on spin configurations by mapping the lattice L onto
itself and is the identity in the spin space A.

In this paper, we will restrict ourselves to the (rather
common) situation in which the full symmetry group SH of
the model is the direct product SS × SL. (A case in which
SH �= SS × SL is the antiferromagnetic square lattice with a
site-dependent magnetic field taking two opposite values on
each sublattice. The spin inversion Si → −Si is not in SS , the
translation by one lattice spacing is not in SL, but the compo-
sition of both is in SH . The theory developed in this paper can,
however, be used in this case by replacing SL by SH /SS .)

Let G be the set of all the applications from the lattice
symmetry group SL to the spin symmetry group SS . An
element G of G associates a spin symmetry GX to each lattice
symmetry X:

G : SL → SS,

X �→ GX.
(2)

We now concentrate on a fixed spin configuration c. Hc

denotes its stabilizer, that is, the subgroup of SH whose
elements do not modify c. Its spin symmetry group HS

c is
the group of unbroken spin symmetries: HS

c = SS ∩ Hc.
We introduce two definitions:
(i) A mapping G ∈ G is said to be compatible with a spin

configuration c if the composition of an element of SL with its
image by G leaves c unchanged:

∀X ∈ SL, GXX ∈ Hc. (3)

(ii) A configuration c is said to be regular if any lattice
symmetry X ∈ SL can be “compensated” by an appropriate
spin symmetry GX ∈ SS , which means GXX|c〉 = |c〉 (that is,
GXX ∈ Hc). In other words, c is an RMO if there exists a
mapping G ∈ G such that G and c are compatible.

In an RMO, the observables that are invariant under SS

are therefore invariant under all lattice symmetries. These
definitions are summarized in Fig. 1.

The simplest RMO’s are those that are already invariant
under lattice symmetries (i.e., SL ⊂ Hc), without the need to
perform any spin symmetry. This is the case of a ferromagnetic
(F) configuration, with all spins oriented in the same way. But
less trivial possibilities exist, such as the classical GS of the
antiferromagnetic (AF) first-neighbor Heisenberg interaction
on the square lattice. This GS possesses two sublattices with
opposite spin orientations. Each lattice symmetry X either
conserves the spin orientations or reverses them, so we can
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FIG. 1. (Color online) A lattice symmetry X ∈ SL acts on a spin
configuration c to give a new configuration c′ = Xc. If c is regular,
there is a spin symmetry GX ∈ SS such that one gets back the initial
state: GXc′ = c.

choose as GX either the identity or the spin inversion Si →
−Si .

If the subgroup HS
c = SS ∩ Hc of unbroken spin symme-

tries contains more than the identity, there are several elements
of G compatible with c. For each X, there are as many GX

as elements in HS
c . In the previous example of the GS of

the AF square lattice, HS
c is the set of spin transformations

that preserve the two opposite spin orientations: this group
is isomorph to O(2). Beginning with a compatible G, each
GX can be composed with an element of HS

c to give another
compatible element of G.

To summarize, RMO’s are not restricted to states strictly
respecting the lattice symmetries, but to states that in some way
weakly respect them. We will now explain how to construct all
the regular spin configurations on a given lattice.

III. CONSTRUCTION OF RMO’s

To construct the RMO’s, we proceed in two steps. In the
first step, we fix a given unbroken spin symmetry group HS

c ,
and consider the algebraic constraints that the lattice symmetry
group SL imposes on a mapping G ∈ G, assuming that some
(so far unknown) spin configuration c is compatible with G.
These constraints lead to a selection of a subset GA of G,
composed of the mappings G that are compatible with the
lattice symmetries. For an element G of GA, the group

HG = {GXX,X ∈ SL} × HS
c (4)

is dubbed the algebraic symmetry group associated with G.
When HS

c = {I }, the algebraic symmetry groups are an
extension of the magnetic space groups,4 which are themselves
an extension of the crystallographic space groups. To go from
crystallographic to magnetic space groups, the time-reversal
transformation or the identity is combined to each of the lattice
transformations. Points of the lattice have black or white
points. To go from crystallographic to algebraic symmetry
groups, a spin transformation is combined to each of the lattice
transformations. Now points of the lattice carry elements of SS .

In three dimensions (3D), there are 230 crystallographic
space groups. In 2D, they reduce to the 17 wallpaper groups. In
the following sections, we are going to derive all the algebraic
symmetry groups derived from two of the wallpaper groups,
denoted p6m (triangular Bravais lattice of Fig. 2) and p4m

(square Bravais lattice of Fig. 2) in the Hermann-Mauguin
notations. These are the simplest cases in 2D because they are
the most constrained, thus they have the fewest groups. But
we could derive the algebraic symmetry group of any of the
two- or three-dimensional crystallographic space groups by
the same procedure as in these examples.

FIG. 2. (Color online) Generators of the lattice symmetries group
SL for the triangular, kagome, honeycomb, and square lattices. For
the first three lattices: the two translations T1 and T2 (along the two
basis vectors T1 and T2), the reflection σ and the rotation R6 of angle
π/3. For the square lattice, generators of SL are T1, T2, σ , and the
rotation R4 of angle π/2.

In the second step of the RMO construction, one determines
the configurations (if any) that are compatible with a given
algebraic symmetry group.

A. Algebraic symmetry groups

We fix the spin symmetry group HS
c (to be exhaustive, we

will consecutively consider each possible HS
c ). Let X, Y , and Z

be three elements of SL such that XY = Z. We will see that this
algebraic relation imposes some constraints on the mappings
G that are compatible with a spin configuration. Indeed,
we assume that there exists a configuration c compatible
with G. Then, GZZ and GXXGY Y are in Hc. This implies
that GXXGY YZ−1G−1

Z is also in Hc. Elements of SL and
SS commute, so we have GXXGY YZ−1G−1

Z = GXGY G−1
Z ,

which is a pure spin transformation. We deduce that

∀X,Y ∈ SL, GXGY G−1
(XY ) ∈ HS

c . (5)

If the above constraint is not satisfied, G must be excluded
from the set GA of the algebraically compatible mappings.

Now we illustrate these general considerations using the
following example: L is an infinite triangular lattice and the
spin space A is the two-dimensional sphere S2 (Heisenberg
spins). SL is generated by two translations T1 and T2 along
vectors T1 and T2, a reflection σ , and a rotation R6 of angle
π/3, described in Fig. 2 and defined in the (T1,T2) basis as

T1 : (r1,r2) �→ (r1 + 1,r2), (6a)

T2 : (r1,r2) �→ (r1,r2 + 1), (6b)

σ : (r1,r2) �→ (r2,r1), (6c)

R6 : (r1,r2) �→ (r1 − r2,r1). (6d)

The spin symmetry group SS is chosen to be O(3) (as for a
Heisenberg model). In such a system, the unbroken symmetry
group HS

c is either isomorph to {I }, Z2, or O(2), depending
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on the orientations of the spins (noncoplanar, coplanar, or
collinear, respectively). The nonplanar case, HS

c = {I }, is the
most interesting case and we choose it for this example. The
two other cases can be treated by reducing A to the circle
S1 or S0 = {1, − 1} (XY or Ising spins) and SS to O(2)
or O(1) to have HS

c = {I }, which simplifies the calculations
considerably.

We assume that a mapping G belongs to GA (algebraically
compatible). As HS

c = {I }, Eq. (5) allows us to construct the
full mapping G simply from the images of the generators of
the lattice symmetry group SL. As several combinations of
generators can produce the same element of SL, the images by
G of the SL generators must satisfy some algebraic relations.
These relations were needed in a similar algebraic study in
Ref. 5 and consist in all the relations necessary to put each
product of generators in the form σ sRr

6T
t1

1 T
t2

2 , where s = 0,1,
r = 0,1, . . . ,5, and t1, t2 ∈ Z. These relations are

T1T2 = T2T1, (7a)

T1R6T2 = R6, (7b)

R6T1T2 = T2R6, (7c)

T1σ = σT2, (7d)

R6
6 = I, (7e)

σ 2 = I, (7f)

R6σR6 = σ. (7g)

From these equations and from Eq. (5), we get

GT1GT2 = GT2GT1 , (8a)

GT1GR6GT2 = GR6 , (8b)

GR6GT1GT2 = GT2GR6 , (8c)

GT1Gσ = GσGT2 , (8d)

G6
R6

= I, (8e)

Gσ 2 = I, (8f)

GR6Gσ GR6 = Gσ . (8g)

The details of the calculations are given in Appendix A.
The solutions can be divided in three families:

GT1 = GT2 = I, (9a)

θT1 = θT2 = π and nT1 ⊥ nT2 , (9b)

GT1 = GT2 �= I, (9c)

where each element GX is characterized by its determinant
εX = ±1 (not appearing here) and by a rotation RnXθX

of axis
nX and of angle θX ∈ [0,π ] such that GX = εXRnXθX

. Up to
a global similarity relation [GX → MGXM−1,M ∈ SO(3)],
we obtain 28 solutions of the system of Eqs. (8) in the case
of Eq. (9a), four for Eq. (9b), and eight for Eq. (9c). The 40
solutions are listed below:

GT1 = GT2 = I, Gσ = εσ I, GR6 = εRI, (10a)

GT1 = GT2 = I, Gσ = εσ I, GR6 = εRRzπ , (10b)

GT1 = GT2 = I, Gσ = εσRzπ , GR6 = εRI, (10c)

GT1 = GT2 = I, Gσ = εσRzπ , GR6 = εRRzπ , (10d)

GT1 = GT2 = I, Gσ = εσRzπ , GR6 = εRRxπ , (10e)

GT1 = GT2 = I,Gσ = εσRzπ ,GR6 = εRRxθ , (10f)

GT1 = Rxπ ,GT2 = Ryπ ,

Gσ = −εσ

⎛
⎝ 0 1 0

1 0 0
0 0 1

⎞
⎠, GR6 = εR

⎛
⎝ 0 1 0

0 0 1
1 0 0

⎞
⎠,

(10g)

GT1 = GT2 = Rz 2π
3
,Gσ = εσ I,GR6 = εRRxπ , (10h)

GT1 = GT2 = Rz 2π
3
,Gσ = εσRzπ ,GR6 = εRRxπ , (10i)

where x ⊥ z, εσ ,εR = ±1, and θ ∈ {π
3 , 2π

3 }. Each line cor-
responds to four solutions, except for Eq. (10f) with eight
solutions. We stress that the algebraic symmetry groups depend
on SS , HS

c , and on the algebraic properties of SL, but not
directly on the lattice L. In particular, different lattices can have
the same algebraic symmetry groups. The results, Eqs. (10),
are exactly the same on a honeycomb or a kagome lattice with
symmetries of Fig. 2 because the algebraic equations (7) stay
the same.

B. Compatible states

The second step consists in taking each element of GA

and finding all the compatible states. This last step is fully
lattice-dependent.

To construct an RMO compatible with some mapping G ∈
GA, one first chooses the direction of the spin on a site i. Then,
by applying all the transformations of SL, we deduce the spin
directions on the other sites. A constraint appears when two
different transformations X and Y lead to the same site X(i) =
Y (i). The image spins have to be the same: GX(Si) = GY (Si).
It can either give a constraint on the direction of Si or indicate
that no G-compatible state exists.

To find these constraints, we divide the lattice sites in orbits
under the action of SL (if all the sites are equivalent, there is a
single orbit). In each orbit, we choose a site i. Each nontrivial
transformation X that does not displace i gives a constraint:
GX(Si) = Si . For each G ∈ GA, the associated RMO’s are
obtained by choosing a site in each orbit, a spin direction
respecting the site constraints, and then propagating the spin
directions through the lattice using the symmetries in SL.

C. Example of RMO construction: The triangular lattice

Let us apply this method to the example of the triangular
lattice. There is a single orbit, and the transformations that
leave the site of coordinates (0,0) in the (T1,T2) basis invariant
(see Fig. 2) are generated by σ and R6, giving the two
constraints Gσ (S(0,0)) = GR6 (S(0,0)) = S(0,0).

The mapping of Eq. (10a) has compatible states only for
εR = εσ = 1. They are ferromagnetic (F) states, as shown in
Fig. 3(a). Since GT1−2 = I for Eqs. (10b)–(10f), no new RMO’s
can be compatible with any of them.

The mapping of Eq. (10g) has compatible states only for
εR = 1 and εσ = −1. Then S(0,0) = ±(1,1,1)/

√
3 and the

state is the tetrahedral state depicted in Fig. 3(b), where
the spins of four sublattices point toward the corners of a
tetrahedron. The sign of S(0,0) determines the chirality of the
configuration.

The next RMO is the coplanar state of Fig. 3(c), which
is compatible with Eq. (10i) for εR = εσ = 1 and S(0,0) =
±(1,0,0). The three sublattices are coplanar with relative an-
gles of 120◦. This state is not chiral because the configurations
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(a) Ferromagnetic (F) state. E = 6J1 + 6J2 + 6J3 + 42K.

1/31/3
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(b) Tetrahedral state. E = −2J1 − 2J2 + 6J3 − 34K/3.

1/2

1/2 1/2

1/2

1/21/2

Γ

Κ

Μ

1/2

(c) Coplanar state. E = −3J1 + 6J2 − 3J3 − 3K.

(d) F umbrella states.

FIG. 3. (Color online) Regular magnetic orders on the triangular
lattice. The sublattice arrangements (labeled by colors) and the spin
directions on each sublattice are displayed in the left and center
columns. A spin unit cell is surrounded with green lines. The positions
and weights of the Bragg peaks in the hexagonal Brillouin zone of the
lattice are in the right column. The energy per site of each structure
is given as a function of the parameters of the models described in
Sec. VI.

obtained with the two possible S(0,0) are related by a global
spin rotation in SO(3).

A continuum of umbrella states are compatible with
Eq. (10i) with εσ = 1 and εR = −1. They are depicted
in Fig. 3(d), where the sublattices are the same as those
for the coplanar states but the relative angles between the
spin orientations are all identical and � 120◦. This family
interpolates between the F and the coplanar states.

We started by choosing HS
c = {I }, but states with HS

c = Z2

(for the coplanar state) or O(2) (for the F state) have been
obtained anyway. One can check that choosing another HS

c

would not give any new RMO. All the RMO’s are thus those
gathered in Fig. 3.

The Bragg peaks of these states are displayed in the
hexagonal Brillouin zone in the right column of Fig. 3 and their
powder-averaged structure factors in Appendix B together with
the formulas for these quantities.

IV. REGULAR MAGNETIC ORDERS FOR HEISENBERG
SPINS ON SEVERAL SIMPLE LATTICES

In the following, we enumerate the RMO’s on the kagome
and honeycomb lattices, two lattices that have a symmetry
group SL isomorphic to that of the triangular lattice. To be
complete, we also present the RMO’s on the square lattice and
discuss the spiral states that may be seen as RMO’s when SL

reduces to the translation group.

A. Kagome lattice

The symmetry group SL of the kagome lattice is isomorphic
to that of the triangular lattice, thus the algebraic solutions Eqs.
(10) remain valid. Carrying out the approach of Sec. III B for
this new lattice, one obtains all the RMO’s on the kagome
lattice. They are displayed in Fig. 4 together with the positions
and weights of the Bragg peaks and are listed below. The
equal-time structure factor is depicted in the extended Brillouin
zone (EBZ), drawn with thin lines in Fig. 4: the kagome lattice
has three sites per unit cell of the underlying triangular lattice
and the EBZ has a surface four times larger than the BZ of the
underlying triangular Bravais lattice, drawn with dark lines.
Powder-averaged structure factors of the RMO’s are given in
Appendix B.

One RMO is collinear [HS
c = O(2)]:

(i) The ferromagnetic (F) state of Fig. 4(a).
Two states with a zero total magnetization are coplanar

(HS
c = Z2):
(ii) The q = 0 state of Fig. 4(b) has three sublattices of

spins at 120◦ and a three-site unit cell.
(iii) The

√
3 × √

3 state of Fig. 4(c) has three sublattices of
spins at 120◦ and a nine-site unit cell.

Three states with a zero total magnetization completely
break O(3) (HS

c = {I }):
(iv) The octahedral state of Fig. 4(d) has six sublattices of

spins oriented toward the corners of an octahedra and a 12-site
unit cell.

(v) The cuboc1 state of Fig. 4(e) has 12 sublattices of spins
oriented toward the corners of a cuboctahedron and a 12-site
unit cell.

(vi) The cuboc2 state of Fig. 4(f) has 12 sublattices of spins
oriented toward the corners of a cuboctahedron and a 12-site
unit cell. Note that the first-neighbor spins have relative angles
of 60◦, in contrast to 120◦ for the cuboc1 state.

Two continua of states with a nonzero total magnetization
completely break O(3) (HS

c = {I }):
(vii) The q = 0 umbrella states of Fig. 4(g), left.
(viii) The

√
3 × √

3 umbrella states of Fig. 4(g), right.
These continua interpolate between the ferromagnetic state

and the coplanar states, Figs. 4(b) and 4(c).

B. Honeycomb lattice

All the RMO’s on the honeycomb lattice are depicted in
Fig. 5 and listed below. The EBZ is drawn with thin lines (its
surface is three times larger than that of the BZ).

Two RMO’s are collinear [HS
c = O(2)]:

(i) The ferromagnetic state of Fig. 5(a).
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(a) Ferromagnetic (F) state.
E = 4J1 + 4J2 + 2J ′
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(b) q = 0 state. E = −2J1 − 2J2 + 2J ′
3 + 4J3.
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(d) Octahedral state. E = 2J ′
3 − 4J3.

1/6

1/6 1/6

1/6

1/61/6

Γ

Κ
Μ

Κe

Μe

(e) Cuboc1 state. E = −2J1 + 2J2 − 2J ′
3.
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(f) Cuboc2 state. E = 2J1 − 2J2 − 2J ′
3.

(g) q = 0 (left) and
√

3 ×
√

3 (right) umbrella states.

FIG. 4. (Color online) Regular magnetic orders on the kagome
lattice and their equal-time structure factors in the EBZ (see text).
The energies (per site) of these states are given for the J1-J2-J3-J ′

3

model described in Sec VI.
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(a) Ferromagnetic (F) state. E = 3J1 + 6J2 + 3J3.
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(b) Antiferromagnetic (AF) state. E = −3J1 + 6J2 − 3J3.
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(c) Cubic state. E = J1 − 2J2 − 3J3.
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(d) Tetrahedral state. E = −J1 − 2J2 + 3J3.

(e) V states.

FIG. 5. (Color online) Regular magnetic orders on the honey-
comb lattice and their equal-time structure factors in the EBZ (see
text). The energies (per site) are given for a J1-J2-J3 Heisenberg
model.

(ii) The antiferromagnetic state of Fig. 5(b) has two sub-
lattices of spins oriented in opposite directions and a two-site
unit cell.

Two states with a zero total magnetization completely break
O(3) (HS

c = {I }):
(iii) The cubic state of Fig. 5(c) has eight sublattices of spins

oriented toward the corners of a cube and an eight-site unit cell.
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1
Γ

Κ

Μ1

(a) Ferromagnetic (F) state.
E = 4J1 + 4J2 + 4J3 + 14K.

1

11

1

Γ

Κ

Μ

(b) (π, π) Néel (AF) state.
E = −4J1 + 4J2 + 4J3 − 2K.

1/21/2

1/2

1/2

Γ

Κ

Μ

(c) Orthogonal coplanar state.
E = −4J2 + 4J3 − 6K.

(d) V states.

(e) Tetrahedral umbrella
states (AF umbrellas).

(f) Umbrella states
(F umbrellas).

FIG. 6. (Color online) Regular magnetic orders on the square
lattice and their equal-time structure factors in the square BZ. The
energy per site of each structure is given as a function of the
parameters of the models described in Sec. VI.

(iv) The tetrahedral state of Fig. 5(d) has four sublattices
of spins oriented toward the corners of a tetrahedron and a
four-site unit cell.

A continuum of states with a nonzero total magnetization
partially breaks O(3) (HS

c = Z2):

(v) The V states of Fig. 5(e), which interpolate between the
F and AF states.

C. Square lattice

The symmetry group SL of the square lattice is distinct
from that of the triangular lattice (see Fig. 2) and one has
to determine its algebraic symmetry groups from a system
of equations similar to Eqs. (7). The 168 solutions are listed
below:

GT1 = GT2 = ε1I, Gσ = εσRzπ , GR4 = εRRxπ ,

GT1 = GT2 = ε1Rzπδ1 , Gσ = εσRxπ , GR4 = εRRz π
2
,

GT1 = GT2 = ε1Rzπδ1 , Gσ = εσ Rzπδσ
, GR4 = εRRzπδR

,

GT1 = GT2 = ε1Rzπ , Gσ = εσRzπδσ
, GR4 = εRRxπ ,

GT1 = GT2 = ε1Rzπ , Gσ = εσRxπ , GR4 = εRRzπδR
,

GT1 = GT2 = ε1Rzπ , Gσ = εσ Rxπ , GR4 = εRRxπ ,

GT1 = GT2 = ε1Rzπ , Gσ = εσ Rxπ , GR4 = εRRyπ ,

GT1 = ε1Rxπ , GT2 = ε1Ryπ ,

Gσ =
⎛
⎝ 0 1 0

1 0 0
0 0 −εσ

⎞
⎠, GR4 =

⎛
⎝ 0 e1 0

e2 0 0
0 0 e3

⎞
⎠,

where x, y, z are orthonormal vectors, e1, e2, e3, ε1, εσ , εR =
±1, and δR , δσ , δ1 = 0 or 1.

Then, the construction of the compatible states leads to the
RMO’s depicted in Fig. 6 and listed below.

Two RMO’s are collinear [HS
c = O(2)]:

(i) The ferromagnetic state of Fig. 6(a).
(ii) The (π,π ) Néel (AF) state of Fig. 6(b) has two

sublattices of spins oriented in opposite directions and a
two-site unit cell.

One state with a zero total magnetization is coplanar (HS
c =

Z2):
(iii) The orthogonal coplanar state of Fig. 6(c) has four

sublattices of spins with angles of 90◦ and a four-site unit cell.
Then we have three continua of states:
(iv) The V states of Fig. 6(d) have a nonzero total

magnetization and partially break O(3) (HS
c = Z2). They

interpolate between the F and the (π,π ) Néel states.
(v) The tetrahedral umbrella states of Fig. 6(e) have a zero

total magnetization and completely break O(3) (HS
c = {I }).

They interpolate between the (π,π ) Néel and the orthogonal
coplanar state.

(vi) The four-sublattice umbrella states of Fig. 6(f) have
a nonzero total magnetization and completely break O(3)
(HS

c = {I }). They interpolate between the F and the orthogonal
coplanar state.

D. Regular magnetic orders with only translations

When the lattice symmetry group is commutative, the
construction of RMO’s is particularly simple. This occurs if
only translations are considered. In that case, one may choose
some arbitrary directions for the spins of the reference unit
cell. Then, one has to choose an O(3) element GTi

associated
with each unit lattice translation Ti in direction i (with as many
generators as space dimensions). Assuming that HS

c = I , and
using the fact that the translations commute with each other,
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we find that the GTi
also commute. A first family of solutions

consists in choosing a set of rotations with the same axis n,
and unconstrained angles. This gives the conventional spiral
states. Thanks to the arbitrary choice of the spin directions in
the reference unit cell, such states are not necessarily planar.

All these solutions may be generalized by combining one
or more GTi

with a spin inversion −I . These generalized spiral
states will be denoted SS’s in the following.

Finally, another family of solutions can be obtained by
choosing the GTi

among the set of π rotations with respect
to some orthogonal spin directions, therefore insuring the
commutativity regardless of whether or not they are combined
with −I .

V. GEOMETRICAL REMARKS

In this section, we discuss some geometrical properties of
RMO’s.

A. Groups and polyhedra

From an RMO c, one can consider the set � ⊂ A of all the
different orientations taken by the spins. We assume that c has
a finite number of sublattices (and thus of spin directions), so
that � is finite. For a three-component spin system, � is just a
set of points on the unit sphere S2, as displayed in the central
columns of Figs. 3, 4, 5, and 6. � may be a single site, the
ends of a segment, the corners of a polygon, or the corners of
a polyhedra.

The four lattices studied here share some special properties:
all the sites and all first-neighbor bonds are equivalent (linked
by an SL transformation). Due to this equivalence, � also
forms a segment-polygon-polyhedron with equivalent vertices
and bonds (notice that nearest neighbors on the lattice do not
necessarly correspond to nearest neighbor spin directions in
spin space). A polyhedron with this property is said to be
quasiregular. If the elementary plaquettes of the lattices are
also equivalent (as in the triangular, square, and hexagonal
lattices, but not in the kagome lattice where both triangular
and hexagonal elementary plaquettes are present) and if � is
a polyhedron, its faces should also be equivalent. � must then
be one of the five regular convex polyhedra (Platonic solids):6

tetrahedron, cube, octahedron, dodecahedron, or icosahedron
(again, the plaquettes of the lattice need not to map to the faces
of the polyhedron).

We now only consider the case in which HS
c = {I } (this

condition can always be verified by reducing A to its elements
invariant by HS

c and by consequently modifying SS). Clearly,
the lattice symmetries constrain the possibilities for the set
�, since each lattice symmetry X permutes the sites in �

but leaves it globally unchanged. This relation is particularly
easy to visualize in the case of the tetrahedral state on the
triangular lattice, since both the lattice and the polyhedron �

have triangular plaquettes (faces): one can put a tetrahedron
with a face posed onto a lattice face. Then, one rolls the
tetrahedron over the lattice to obtain a spin direction at each
lattice site. Notice that such a construction would not work
with a cube on the square lattice (and indeed, there is no such
eight-sublattice RMO on the square lattice; see Sec. IV C).
But since the state c is regular, these permutations can also be

achieved by a spin symmetry in SS , and the symmetry group
S� of � should be viewed as a finite subgroup of SS .

For SS = O(3), the classification of these subgroups—
called point groups—is a classical result in geometry.6 It
contains seven groups (related to the three symmetry groups
of the five regular polyhedra) and seven infinite series
(conventionally denoted Cn, Cnv , Cnh, Dn, Dnh, Dnd , and Sn

with n ∈ N; they are related to the cyclic and dihedral groups).
Of course, the nonplanar RMO’s we have discussed so far
(Secs. III C and IV) fall into this classification. For instance,
the three- and four-sublattice umbrella states of Figs. 3(d),
6(e), and 6(f) correspond to C3v , D2d , and C4v (with six, eight,
and eight elements, respectively). The cubic, octahedral, and
cuboctahedron states correspond to the symmetry group of the
cube (48 elements), and the tetrahedral state corresponds (of
course) to its own symmetry group.

B. Regular magnetic orders and representation of the lattice
symmetry group

We again focus on three-component spin systems with a
spin symmetry group SS = O(3). In an RMO c, each lattice
symmetry X can be associated to a matrix GX in O(3).
Now, as in Sec. III A, we can compare the actions of two
lattice symmetries X and Y . GXGY G−1

XY belongs to HS
c .

By choosing GX invariant in all directions perpendicular to
all spins, we obtain GXGY = GXY , which implies that G

is a representation of the lattice symmetry group SL. After
removing the trivial representations associated with directions
perpendicular to spins, its dimension is 1 for a collinear state,
2 for planar states, and 3 for the others. Is this representation
reducible? If yes, it must contain at least one representation of
dimension 1 (because the maximal dimension considered here
is 3), thus there exists at least one spin direction that is stable
under all the spin symmetry operations spanned by GX with
X ∈ SL. Except in the trivial collinear case, one can easily
check that it is the case only for the states belonging to a
continuum. For the V states, G is the direct sum of a trivial
and a nontrivial 1D representation of SL. For the umbrella
states, G is the direct sum of a trivial 1D and a 2D irreducible
representation (IR). For the tetrahedral state of Fig. 6(e), G is
the direct sum of a nontrivial 1D and a 2D IR representation.
For the other cases, the associated representation is irreducible.

There is another context in which antiferromagnetic Néel
states are known to be related to irreducible representations.
If a quantum antiferromagnet has a GS with long-range Néel
order, its spectrum displays a special structure, called a “tower
of states.”7,8 It reflects the fact that a symmetry-breaking
Néel state is a linear combination of specific eigenstates with
different quantum numbers describing the spatial symmetry
breaking, and with different values of the total spin S,
describing the SU(2) symmetry breaking. If such a quantum
system has a GS with a regular Néel order, its tower of state
should have an S = 1 state with the same quantum numbers
as those of the irreducible representation X �→ GX discussed
above. The reason why this representation shows up in the
S = 1 sector of the tower of state is because S = 1 corresponds
to the action of the lattice symmetries onto a three-dimensional
vector, as in the classical spin directions.
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VI. ENERGETICS

As discussed in the Introduction, there is no simple way
to find the GS of a classical spin model if the lattice is not a
Bravais lattice, and/or if spin-spin interactions are not simply
quadratic in the spin components. So far, we have discussed
RMO’s from pure symmetry considerations, but in Sec. VI A
we show that, under some rather general conditions, a RMO is
a stationary point for the energy, regardless of the Hamiltonian
(provided it commutes with the lattice symmetries).

In addition, we argue that RMO’s are good candidates to
be global energy minima. To justify this, we first discuss
a rigorous energy lower bound (Sec. VI B) for Heisenberg-
like Hamiltonians, and we investigate in Sec. VI C several
Heisenberg models with further neighbor interactions (J1, J2,
J3, etc.) on non-Bravais lattices such as the hexagonal and
kagome lattices. In large regions of the phase diagrams, one
RMO energy reaches the lower bound and is one (possibly not
unique) exact GS.

A. A condition for an RMO to be “stationary” with respect to
small spin deviations

To address the question of the energetic stability of RMO’s,
we give some conditions under which an infinitesimal variation
of the spin directions would not change the energy (a necessary
condition to have a GS). To simplify the notations, we consider
a Heisenberg model with some competing interactions [such
as in Eq. (1)], but the arguments easily generalize to multispin
interactions of the form (Si · Sj )(Sk · Sl) . . . (at the condition
that they respect the lattice symmetries).

We assume that there is a nontrivial lattice symmetry X that
leaves one site i unchanged: X(i) = i (existence of a nontrivial
point group). In addition, we assume that a spin rotation Rs

of axis n and angle θ �= 0 can be associated with X to have
RsXc = c. These conditions ensure that the invariant direction
of Rs is n = ±Si . With the exception of states belonging to a
continuum, all RMO’s verify these conditions on the lattices
we have studied.

With these conditions, the derivatives of the energy with
respect to the spin directions vanish. The proof is as follows.
One considers the local field hi = ∂E

∂Si
, which is experienced

by the spin i. hi is a linear combination of the Sj where j runs
over the sites that interact with the site i:

hi =
∑

d

Jd

∑
j∈Nd (i)

Sj , (12)

where Nd (i) is the set of the neighbors of i at distance d on the
lattice. Since the configuration c is invariant under RsX, one
may also compute hi as

hi =
∑

d

Jd

∑
j∈X(Nd (i))

Rs(Sj ). (13)

X reshuffles the neighbors of i (at any fixed distance), but since
X(i) = i, Nd (i) is globally stable: Nd (i) = X(Nd (i)). So, from
Eq. (13), we have

hi = Rs(hi). (14)

We therefore conclude that hi is collinear with n and thus
collinear with Si . This shows that the energy derivative ∂E

∂Si

vanishes for spin variations orthogonal to Si [longitudinal spin
variations are not allowed as (Si)2 must be kept fixed].

All RMO’s studied in the previous examples that do not
belong to a continuum are thus “energetically stationary” with
respect to small spin deviations. They are thus interesting
candidates for global energy minima.

B. Lower bound on the energy of Heisenberg models

The Fourier transform Sqi of the local spin on a periodic
lattice of N unit cells is defined by

Sqi = 1√
N

∑
x

Sxie
−iqx,

where each site is labeled by an index i = 1, . . . ,m (m is the
number of sites per unit cell), x is the position of its unit
cell, and q is a wave vector in the first Brillouin zone. For a
Hamiltonian in the form of Eq. (1), the energy can be written
as

E =
∑
v,x

i,j = 1, . . . ,m

Jij (v) Sxi · Sx+vj (15)

=
∑

q ∈ BZ
i,j = 1, . . . ,m

Jij (q) S−qi · Sqj , (16)

with

Jij (q) =
∑

v

Jij (v)eiq·v. (17)

Since (Six)2 = 1 for all i and x,
∑

ix S2
ix = ∑

iq S2
qx = mN ,

we see that a lower bound on the energy (per site) is obtained
from the lowest eigenvalue of the matrices J (q):9

E

mN
� min

{q}
(
J min

q

)
, (18)

where J min
q is the lowest eigenvalue of the matrix J (q).

If the lattice has a single site per unit cell (m = 1), this
lower bound is reached by a planar spiral of the form1

Sx1 = u cos(Q · x) + v cos(Q · x), (19)

where Q is the propagation vector (pitch) of the spiral, and
corresponds to a minimum of J min

q . In spin space, the plane of
the spiral is fixed by two orthonormal vectors u and v. When
m = 1, it is only when J min

q admits several degenerate minima
in the Brillouin zone that additional nonspiral (and possibly
nonplanar) GS’s may be constructed. If the lattice has more
than one site per unit cell, an attempt to construct a spiral
with a pitch corresponding to the smallest eigenvalue J (Q)min

will generally not lead to a physical spin configuration with
fixed spin length S2

ix = 1 at every site. We will, however, see
in the next section that for some models, a nonplanar RMO
may reach the lower bound, whereas all the spiral states are
energetically higher.

C. Variational phase diagrams of Heisenberg models on the
kagome and hexagonal lattices

In this section, we comment on the phase diagrams of J1-
J2-J3(-J ′

3) Heisenberg models on the kagome and hexagonal
lattices. Jn is the interaction between nth neighbors. On the
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(a) J1 = 1 (AF) (b) J1 = −1 (F)

FIG. 7. (Color online) Phase diagram of the J1-J2-J3 Heisenberg
model on the honeycomb lattice. Labels refer to the RMO’s described
in Fig. 5. In each colored region (black excluded), the RMO is an exact
GS. In the black region, a generalized spiral state (SS) has an energy
strictly lower than the RMO’s, but the actual GS energy might still
be lower.

kagome lattice, there are two types of third neighbors depicted
in Fig. 8(a), and thus two coupling constants J3 and J ′

3.
For each set of parameters, we determined the lowest-

energy RMO (the energies of RMO’s are given in Figs. 4
and 5), the lowest-energy SS of Sec. IV D, and the lower
bound on the energy. The results on these two lattices are
described in Figs. 7 and 8. Such phase diagrams are a priori
variational. However, it turns out than in all the colored (white
included, gray and black excluded) regions of Figs. 7 and 8,
the RMO with the lowest energy reaches the rigorous lower
energy bound of Eq. (18). This demonstrates that (at least)
one GS is regular in these regions of the parameter space.
In the gray areas, the energy lower bound is not reached, but
the regular nearby state could be a GS as no SS has a lower
energy. In the black areas, the GS is not regular: some SS’s are
energetically lower (but sometimes still higher than the lower
bound). All RMO’s (excepted those from continua) appear
in some area of the presented phase diagrams. This shows
that these states are good candidates as variational GS’s. The
absence of RMO’s of a continuum in a Heisenberg model is
easily understood. The energy E of any RMO c belonging
to a continuum cannot be lower than the energies E1 and
E2 of the two states c1 and c2 between which it interpolates.
One (at least) of the two states, say c1, is collinear along a
direction n. The c2 spins are then perpendicular to n. Let θ

be the angle between the spins of the continuum state and
n. Then Si = Sc1

i cos θ + Sc2
i sin θ and the energy reads E =

E2 + (E1 − E2) cos2 θ . Thus, E is in between E1 and E2 and is
never strictly the lowest energy. In the presence of an external
magnetic field h and if a one-dimensional representation
included in G is ferromagnetic (as is the case for some
umbrellas and for the V states), n aligns on h. The energy then
reads E = E2 + (E1 − E2) cos2 θ − h cos θ and an umbrella
state becomes stationary. It is well known that such a structure
can be the GS in the presence of a magnetic field.10,11

We will now address the possible degeneracies of regular
tridimensional spin states in these models. On the hexagonal
lattice, our phase diagram is in agreement with Ref. 12. One
should nevertheless notice that the regular tridimensional or-
ders (tetrahedral and cubic states) are degenerate with collinear

(a) Definition of the coupling constants of the model.

(b) J1 = 1, J ′
3 = 0.2 (c) J1 = 1, J ′

3 = −0.2

(d) J1 = −1, J ′
3 = 0.2 (e) J1 = −1, J ′

3 = −0.2

FIG. 8. (Color online) Phase diagram of the J1-J2-J3-J ′
3 model on

the kagome lattice. In each colored region (white included, gray and
black excluded), the RMO is an exact GS. Labels refer to the RMO’s
described in Fig. 4. In the gray regions, the nearby RMO does not
reach the lower bound of Sec. VI B, but no SS is energetically lower.
In the black regions, an SS has a lower energy than the RMO’s, but
the actual GS might yet be lower.

non-RMO’s. These last states have a higher density of soft exci-
tations (larger energy wells in the phase-space landscape) and
will always win as soon as (thermal or quantum) fluctuations
are introduced (order by disorder mechanism13–17). However,
the nonplanar configurations could be stabilized by quartic or
ring-exchange interactions.

On the kagome lattice (Fig. 8), the occurrence of the cuboc2
[Fig. 4(f)] for J1-J2 interactions18 and of the cuboc1 [Fig. 4(e)]
for J1-J ′

3 interactions19 has already been reported. These two
states are not degenerated with SS’s and are to the best of
our knowledge unique and stable GS’s of the model. The
octahedral state has not been found before, but this state has the
same energy as a continuum of non-SS’s including collinear
states, and it will be destabilized by any fluctuation.

D. Square and triangular lattices: Phase diagrams of
Heisenberg versus ring-exchange models

In this section, we will comment on the phase diagram of
the Heisenberg models [Eq. (1)] on the square and triangular
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lattices and display the effect of four-spin ring-exchange
(J1-J2-K) on these two lattices. The J1-J2-K model is defined
as

E =
∑
i,j

J (|xi − xj |)Si · Sj + K
∑
i,j,k,l

[(Si · Sj )(Sk · Sl)

+ (Si · Sl)(Sj · Sk) − (Si · Sk)(Sj · Sl) + Si · Sj

+ Sj · Sk + Sk · Sl + Sl · Si + Si · Sk + Sj · Sl], (20)

where the sum in the K term runs on rhombi i,j,k,l.2 This
model encompasses first- and second-neighbor J1 and J2

couplings and a K is ring-exchange term that introduces
quartic interactions as well as modifications of first- and
second-neighbor Heisenberg interactions.2 The phase dia-
grams are displayed in Figs. 9 and 10.

In the J1-J2-J3 Heisenberg phase diagrams on the square
and triangular lattice, all RMO’s that do not belong to continua
do appear as an exact GS in some parts of the phase diagrams
[colored regions except for the black areas in Figs. 9(a),
9(b), 10(a), and 10(b)]. In the black regions, SS’s are more
stable than RMO’s. As these lattices are Bravais lattices, we

(a) J1 = 1 (AF) (b) J1 = −1 (F)

(c) J1 = 1 (AF) (d) J1 = −1 (F)

FIG. 9. (Color online) Phase diagrams on the square lattice
with J1-J2-J3 Heisenberg interactions (top line) and J1-J2-K model
(bottom line). Labels refer to RMO’s defined in Fig. 6. In each
colored region (black excepted), the RMO has the lowest energy
of the set of all regular and generalized spiral states. In the black
regions, an SS has a lower energy than the RMO’s. For pure
Heisenberg interactions, we know that we obtain the GS energy,
but for non-Heisenberg interactions the actual GS might be lower.
In the J1-J2-J3 model, the coplanar (orthogonal four-sublattice)
phase is degenerate with nonregular collinear states, which will win
upon introductions of fluctuations. On the contrary, the coplanar
(orthogonal four-sublattice) phase is stable in a large range of
parameters in the J1-J2-K model.

(a) J1 = 1 (AF) (b) J1 = −1 (F)

(c) J1 = 1 (AF) (d) J1 = −1 (F)

FIG. 10. (Color online) Phase diagrams on the triangular lattice
with J1-J2-J3 Heisenberg interactions (top line) and J1-J2-K model
(bottom line). Labels refer to RMO’s defined in Fig. 3. In each colored
region (except black), the RMO has the lowest energy of the set of all
regular and generalized spiral states. In the black regions, an SS has
a lower energy than the RMO’s. For pure Heisenberg interactions,
we know that we obtain the GS energy, but for non-Heisenberg
interactions the actual GS might be lower.

know how to reach the lower bond of Sec. VI B thanks to a
spiral state. The orthogonal state on the square lattice and the
tetrahedral state on the triangular lattice [Figs. 3(b) and 6(c)]
are degenerate with SS’s including collinear states with two
spins (up, down) in the magnetic unit cell, which will win
upon introduction of fluctuations. On a large part of the phase
diagram on the square lattice (spirals excepted), the spins are
thus collinear.

The presence of a four-spin ring exchange on the square
lattice gives richer phase diagrams [Figs. 9(c) and 9(d)]
with the appearance of states from continua. We recall that
these phase diagrams are variational and give the minimal
energy state among the regular and generalized spiral states.
A dominant four-spin ring exchange stabilizes the orthogonal
four-sublattice coplanar antiferromagnet, which is known to
be robust to large quantum fluctuations.20 One of these phases
belongs to a continuum: the V states [Fig. 6(d)]. Part of this
phase diagram on the square lattice has been known for a long
time for the J1-K model,21 but the effect of a second-neighbor
interaction leads to new phases that might be interesting in
various respects.

The J1-J2-K phase diagram on the triangular lattice
[Figs. 10(c) and 10(d)] exhibits all the regular phases that
can be constructed on this lattice. In that model, large ring
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exchange stabilizes the tetrahedral chiral phase studied by
Momoi and co-workers.2,22 The presence of large parts of
the phase diagrams with a planar or three-dimensional order
parameter at T = 0, and of points where a large number of
classical phases are in competition, could give interesting hints
in the quest of exotic quantum phases.23–25

E. Finite-temperature phase transitions in two dimensions

In two dimensions, the Mermin-Wagner26 theorem insures
that continuous symmetries cannot be spontaneously broken at
finite temperature. It does not, however, prevent discrete sym-
metries from being broken. Indeed, some finite-temperature
phase transitions associated with discrete symmetries have
been found in classical O(3) models: lattice symmetry breaking
in the J1-J2 and J1-J3 models on the square lattice,27–29 and
chiral symmetry breaking in a ring-exchange model on the
triangular lattice17,22 and in a J1-J2 model on the kagome
lattice.18,30

What should be expected in a system where the GS is
an RMO c? Let us first consider the case in which c is
not chiral, that is, when the spin inversion S → −S gives
a state c′ that can also be obtained from c by a rotation
in SO(3). At an infinitesimal temperature, the rotational
symmetry is restored and the statistical ensemble is that of
all the (regular) states obtained from c by SO(3) rotations. The
thermal average of an observable is therefore also an average
over SO(3) rotations. Now, if we compare an observable
O and the same observable after a lattice symmetry X,
we will get the same average (for RMO’s, the effect of X

can be absorbed by a rotation). So not only the rotational
symmetries but also all the lattice symmetries are restored at
T = 0+. The simplest scenario is therefore a complete absence
of symmetry-breaking phase transition from T = 0+ up to
T = ∞. Now, for a chiral state, the thermal fluctuations will
only partially restore the O(3) symmetry of the model, and
a chiral phase transition should be expected. From this point
of view, a classical system in two dimensions with no finite-
temperature phase transition is likely to have a regular and
nonchiral GS.

When some magnetic long-range order develops, the
magnetoelastic couplings often drive the system to a small
but detectable (through x-ray diffraction, for instance) lattice
distortion. This generically happens if the magnetic order
induces some inequivalent bonds, since the magnetic energy
gain is then expected to be linear in the displacements, whereas
the elastic energy cost is quadratic. However, such inequivalent
bonds do not occur in the case of RMO’s (the energy is
rotationally invariant, hence uniform) and we expect the crystal
to keep its full symmetry in such a magnetically ordered phase.
Likewise, the absence of any lattice distortion down to zero
temperature can be used as an (experimental) indication that
the magnetic phase is regular.

VII. CONCLUSION

Based on symmetry considerations (and on an analogy with
Wen’s3 classification of quantum spin liquids using the concept
of a projective symmetry group), we introduced a family
of classical magnetic structures, dubbed “regular” magnetic

orders. They can be constructed in a systematic way for any
lattice, in any dimension, for any type of spins, using the
method explained in Sec. III. We found that these states are
often good variational states to study the zero-temperature
phase diagram of “complex” problems (non-Bravais lattice
and/or multiple spin interactions, for instance). In many cases,
one of the RMO’s is found to reach a lower energy bound,
allowing us to show that it is a GS.

We note that, although one can always find a planar
GS in Heisenberg models on a Bravais lattice, nonplanar
spin structures with many sublattices are rather common in
the presence of competing interactions, nonquadratic spin
interactions, and non-Bravais lattices. As mentioned in the
Introduction, we believe this approach may find an application
in the study of real magnetic compounds where the (equal-
time) spin-spin correlations are measured, but the strength and
range of the magnetic exchange interactions are not known.

We have studied the case in which the spin manifold A =
S2 is that of a three-component spin (unit vector), but other
manifolds could be investigated using the same approach. For
instance, regular nematic orders would be obtained with A =
S2/Z2 and SS = SO(3).

This approach was applied here to purely classical models,
but can be applied similarly to quantum systems where
the spin-rotational symmetry is broken (magnetic long-range
order). Appendix C describes a similar approach for the case
of spin liquids, where no symmetry at all is broken. It is
interesting to understand the connections between RMO’s and
(mean-field) spin liquids. In particular, an important question
is to identify which spin liquid may give rise to which RMO
upon spinon condensation. This issue has been addressed in
Ref. 31 and will be the subject of a future publication.
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APPENDIX A: DERIVATION OF THE ALGEBRAIC
SYMMETRY GROUPS ON THE TRIANGULAR LATTICE

In this appendix, we look for all the algebraic symmetry
groups on the triangular lattice with symmetries of Fig. 2.
They are the solutions of the system Eq. (8) recalled here:

GT1GT2 = GT2GT1 , (A1a)

GT1GR6GT2 = GR6 , (A1b)

GR6GT1GT2 = GT2GR6 , (A1c)

GT1Gσ = GσGT2 , (A1d)

G6
R6

= I, (A1e)

Gσ 2 = I, (A1f)

GR6GσGR6 = Gσ . (A1g)

Each element GX in O(3) is characterized by its deter-
minant εX = ±1 and by a rotation RnXθX

of axis nX and of
angle θX ∈ [0,π ] such that GX = εXRnXθX

. We choose an

184401-12



LATTICE SYMMETRIES AND REGULAR MAGNETIC . . . PHYSICAL REVIEW B 83, 184401 (2011)

orthonormal right-oriented basis (x,y,z) to express the results
[such that x · (y ∧ z) = 1].

Some simple conditions on solutions are easily obtained:
from Eq. (A1c) we deduce that εT1 = 1, from Eq. (A1b) that
εT2 = 1. Equation (A1d) is a similarity relation, thus θT1 = θT2 .
Equations (A1e) and (A1f) give 6θR6 = 2θσ = 0 modulo 2π .
These first results are summarized below:

εT1 = εT2 = 1, (A2a)

θT1 = θT2 , (A2b)

θσ ∈ {0,π} , (A2c)

θR ∈
{

0,
π

3
,
2π

3
,π

}
. (A2d)

The values of εσ and εR6 have no influence on the validity
of a solution. Thus we solve Eq. (A1) only for εσ = εR6 = 1
and then obtain all solutions by extending their values (εσ ,εR6 )
to (±1, ±1), keeping the other parameters (θX, nX) fixed.

We will divide the solutions in families depending on
the relations between GT1 and GT2 . We immediately discern
the case θT1 = 0 (GT1 = GT2 = I ). From now θT1 > 0, thus
the directions nT1 and nT2 are uniquely defined (with only a
sign ambiguity when θT1 = π ). Equation (A2a) implies that
GT1 and GT2 are rotations and possess at least one eigenvalue
equal to 1 along the directions nT1 and nT2 . Equation (A1a)
applied to vectors nT1 gives that GT2 nT1 is an eigenvector of
GT1 with eigenvalue 1. If this vector is linearly independent of
nT1 , then we know two independent invariant vectors of GT1 .
As the eigenvalue product εT1 is 1 with two eigenvalues equal
to 1, we obtain that GT1 = I , which contradicts the hypothesis
θT1 > 0. We are left with two possibilities: GT2 nT1 = ±nT1 .

If GT2 nT1 = −nT1 , then nT1 and nT2 are two perpendicular
eigenvectors of GT2 with eigenvalues −1 and 1. The third
direction must correspond to the eigenvalue −1. We obtain
that θ1 = π .

If GT2 nT1 = nT1 , then nT1 = ±nT2 . Combined with
Eq. (A2b), this means that GT1 = GT2 with θT1 ∈]0,π [ or
GT1 = G−1

T2
with θT1 ∈]0,π ]. The second subcase is incom-

patible with Eq. (A1c).
We obtain three families of solutions that will now be

explored successively:

GT1 = GT2 = I, (A3a)

θT1 = θT2 = π and nT1 ⊥ nT2 , (A3b)

GT1 = GT2 �= I. (A3c)

(i) In the case of Eq. (A3a), the remaining constraints are
Eqs. (A1g), (A2c), and (A2d). We treat separately the two
cases of Eq. (A2c).

If Gσ = I , then the possibilities for θR are restricted to
{0,π}. We set nR6 = z and obtain the following two solutions:

GT1 = GT2 = I, Gσ = I, GR6 = I,

GT1 = GT2 = I, Gσ = I, GR6 = Rzπ .

If Gσ = Rzπ , we have the easily found solution

GT1 = GT2 = I, Gσ = Rzπ , GR6 = I,

and solutions with θR6 �= 0. Then from Eq. (A1g) we have
GR6Gσ nR6 = Gσ nR6 , which implies RzπnR6 = ±nR6 . In the
“+” case, nR6 = z and Eqs. (A1g) and (A2d) imply that θR ∈
{0,π}. In the “−” case, nR6 ⊥ z. We choose nR6 = x. Equation
(A1g) is verified for each θR6 of Eq. (A2d). The solutions are

GT1 = GT2 = I, Gσ = Rzπ , GR6 = Rzπ ,

GT1 = GT2 = I, Gσ = Rzπ , GR6 = Rxπ/3,

GT1 = GT2 = I, Gσ = Rzπ , GR6 = Rx2 π/3,

GT1 = GT2 = I, Gσ = Rzπ , GR6 = Rxπ .

(ii) In the case of Eq. (A3b), we choose nT1 = x and nT2 = y.
Equation (A1b) applied to y, Eq. (A1c) applied to z, Eq. (A1d)
applied to y, and Eq. (A1e) applied to y give the following
forms for the GR6 and Gσ matrices:

GR6 =
⎛
⎝ 0 e1 0

0 0 e2

e1e2 0 0

⎞
⎠, Gσ =

⎛
⎝ 0 e3 0

e3 0 0
0 0 −1

⎞
⎠,

where e1, e2, and e3 are ±1. From Eq. (A1g) we find that
e1 = −e3. There remain four possibilities. But we can take
e1 = e2 = 1 up to a basis change: (x,y,z) → (e2x,e1e2y,e1z).
Thus

GT1 = Rxπ ,GT2 = Ryπ ,

Gσ = −
⎛
⎝ 0 1 0

1 0 0
0 0 1

⎞
⎠, GR6 =

⎛
⎝ 0 1 0

0 0 1
1 0 0

⎞
⎠.

(iii) In the last case of Eq. (A3c), we choose n1 = z.
Combining Eqs. (A1b) and (A1c), we obtain that G3

T1
= I ,

Thus, GT1 = GT2 = Rz 2π
3

We treat separately the two cases of
Eq. (A2c).

If Gσ = I , then Eqs. (A1b) and (A1g) imply θR6 = π .
Equation (A1b) applied to z gives GR6 z = ±z. The “+” case
(nR6 = ±z) contradicts Eq. (A1b), so it remains the “−” case:
we choose nR6 = x, which is a solution,

GT1 = GT2 = Rz 2π
3
, Gσ = I,GR6 = Rxπ .

If θσ = π , Eq. (A1d) implies that Gσ z = ±z. Gσ is either
Rzπ or a rotation of π around an axe perpendicular to z, say
x. This last case contradicts Eq. (A1d). The only possibility
is thus Gσ = Rzπ . From Eq. (A1b) we know that GR6 z = ±z.
In the “+” case (nR6 = ±z), GR6 , GT 1, and GT 2 commute
and Eq. (A1b) is not verified. We set nR6 = x. From Eq.
(A2d), only θR6 = π verify all the equations, giving the unique
solution

GT1 = GT2 = Rz 2π
3
, Gσ = Rzπ , GR6 = Rxπ .

By taking into account the four solutions derived from each
of the previous ones by multiplying Gσ and GR6 by ±1, we
finally obtained the list of solutions of Eq. (10).

APPENDIX B: POWDER-AVERAGED STRUCTURE
FACTORS OF REGULAR MAGNETIC ORDERS

Equal-time spin-spin correlations partially characterize a
spin state and are independent of the energetic properties of the
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(a) F state (b) Tetrahedral
state

(c) Coplanar state

FIG. 11. (Color online) Powder-averaged equal-time structure
factors S(|Q|) of the RMO’s on the triangular lattice [|Q| is in units
of 2π , S(|Q|) in arbitrary units].

system. Equal-time structure factors can thus be analytically
calculated on RMO’s to form a set of reference neutron-
scattering results. They can be used to analyze measurements
done on compounds with unknown GS. We define the equal-
time structure factor S(Q) of a state as

S(Q) ∝
∑
i,j

e−iQ(xi−xj )Si · Sj , (B1)

where xi is the position vector of the site i. The proportionality
factor is adjusted to verify the sum rule

∑
Q S(Q) = 1.

For perfect long-range orders, S(Q) is zero everywhere
except for a finite number of Q where Bragg peaks
are present. They are broadened when chemical defects,
nonzero temperature, or quantum fluctuations are taken into
account.

When only powders are realizable, one can measure the
powder equal-time structure factor S(|Q|). It is the average
of S[|Q| sin θ (u cos ψ + v sin ψ)] over all the possible 3D
orientations of Q, where θ , ψ are the spherical coordinates
angles of Q in the orthonormal basis (u,v,u ∧ v) with u, v in
the sample plane. Thus

S(|Q|) ∝
∫

d2q

(|Q| − |q|)

|Q|
√

|Q|2 − |q|2 S(q), (B2)

where 
 is the Heaviside step function and q browses the
reciprocal 2D space.

The equal-time structure factors S(Q) were given in Figs. 3,
4, 5, and 6 for the RMO’s on the triangular, kagome,
honeycomb, and square lattices. The powder-averaged equal-
time structure factors S(|Q|) on the triangular and kagome
lattices are shown in Figs. 11 and 12.

APPENDIX C: ANALOGY WITH WEN’S PROJECTIVE
SYMMETRY GROUPS (QUANTUM SPIN MODELS)

For quantum spin- 1
2 Heisenberg models, a standard mean-

field approximation consists in expressing the spin oper-

(a) F state (b) q = 0 state (c)
√

3 ×√
3 state

(d) Octahedral state (e) Cuboc1 state (f) Cuboc2 state

FIG. 12. (Color online) Powder-averaged equal-time structure
factors S(|Q|) of the RMO’s on the kagome lattice [|Q| is in units of
2π , S(|Q|) in arbitrary units].

ators in term of fermionic operators fiα , where i is a
lattice site and α =↑ , ↓ is the spin ±1/2. A mean-field
decoupling based on some bond parameters ηij and ξij

(notations and details to be found in Ref. 3) can then be
performed to make the Hamiltonian quadratic in the fermionic
operators.

This theory has a local SU(2) gauge invariance. The set of
gauge transformations is denoted by �. Physical quantities,
which can be expressed using spin operators, are unaffected
by a gauge transformation, although ηij and ξij are generally
modified. A mean-field state is characterized by a set of ηij

and ξij values, called an Ansatz. Two mean-field states do have
the same physical observables if they are related by a gauge
transformation. The group of transformations (lattice, gauge,
and combined transformations) that do not modify an Ansatz
is called the projective symmetry group (PSG). Its subgroup
of pure gauge transformations is called the invariance gauge
group (IGG).3

One may be interested in states for which all the physical
quantities are invariant under the lattice symmetries. To
classify these “uniform” states, one can first fix the IGG
and then look for the “algebraic” PSG, which obey the
constraints derived from the algebraic structure of lattice
symmetry group SL.3 The actual Ansätze can then be
constructed.

Clearly, there is a close correspondence between the
construction of RMO’s discussed in this paper and that of
symmetric Ansätze. This correspondence is summarized in
Table I.

TABLE I. Analogy between the construction of RMO’s and that of symmetric Ansätze in Ref. 3.

Classical spin models Quantum mean field

State Regular magnetic order Physically symmetric Ansatz
Internal symmetry group SS (global spin rotation, etc.) � (local gauge transformations)
Symmetry group of a state Hc PSG
Unbroken internal symmetries HS

c IGG
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